probability mass function
$f(x)$
argument and parameter(s) Moment-generating function
$M_{X}\left( t \right) = E\left( e^{\text{tX}} \right)$
Moments
$\mu = E\left( X \right) = \sum_{x}^{}{x \cdot f(x)}$
$\sigma^{2} = \text{Var}\left( X \right) = \sum_{x}^{}{\left( x - \mu \right)^{2} \cdot f\left( x \right)}$
Remark Corresponding of continuous distributions R
discrete uniform distribution $f\left( x \right) = \frac{1}{k}$
for $x = x_{1},\ x_{2},\ \cdots,\ x_{k}$
where $x_{i} \neq x_{j}$ when $i \neq j$
$k = 1,\ 2,\ 3,\ \cdots$ $M_{X}\left( t \right) = \frac{e^{t}\left( 1 - e^{\text{kt}} \right)}{k\left( 1 - e^{t} \right)}$ If $x = 1,\ 2,\ 3,\ \cdots,\ k$
$\mu = \frac{k + 1}{2}$
$\sigma^{2} = \frac{k^{2} - 1}{12}$
     
Bernoulli distribution $f\left( x;\ \theta \right) = \theta^{x}\left( 1 - \theta \right)^{1 - x}$
for $x = 0,\ 1$
$x$ (no. of success)
$0 \leq \theta \leq 1$
$M_{X}\left( t \right) = 1 + \theta\left( e^{t} - 1 \right)$ $\mu = \theta$
$\sigma^{2} = \theta(1 - \theta)$
binomial distribution with $n = 1$    
binomial distribution $b\left( x;n,\ \theta \right) = \begin{pmatrix}n \ x \ \end{pmatrix}\theta^{x}\left( 1 - \theta \right)^{n - x}$
for $x = 0,\ 1,\ 2,\ \cdots,\ n$
$x$ (no. of success)
$n = 1, 2, 3,\cdots$
$0 \leq \theta \leq 1$
$M_{X}\left( t \right) = \left\lbrack 1 + \theta\left( e^{t} - 1 \right) \right\rbrack^{n}$ $\mu = \text{nθ}$
$\sigma^{2} = \text{nθ}(1 - \theta)$
1 Normal distribution of
$\mu = \text{nθ}$
$\sigma^{2} = \text{nθ}(1 - \theta)$
[dpqr]binom(x, n, p)
negative binomial distribution $b^{*}\left( x;k,\ \theta \right) = \begin{pmatrix} x - 1 \ k - 1 \ \end{pmatrix}\theta^{k}\left( 1 - \theta \right)^{x - k}$
for $x = k,\ k + 1,\ k + 2,\ \cdots$
    $\mu = \frac{k}{\theta}$
$\sigma^{2} = \frac{k}{\theta}\left( \frac{1}{\theta} - 1 \right)$
2    
geometric distribution $g\left( x;\ \theta \right) = \theta\left( 1 - \theta \right)^{x - 1}$
for $x = 1,\ 2,\ 3,\ \cdots$
$x$ (no. of trials needed to get $k$ success)
$k = 1,\ 2,\ 3,\ \cdots$
$0 \leq \theta \leq 1$
$M_{X}\left( t \right) = \frac{\theta e^{t}}{1 - e^{t}\left( 1 - \theta \right)}$ $\mu = \frac{1}{\theta}$
$\sigma^{2} = \frac{1 - \theta}{\theta^{2}}$
negative binomial distribution with $k = 1$ Exponential distribution  
hypergeometric distribution $h\left( x;n,\ N,\ M \right) = \frac{\begin{pmatrix} M \ x \ \end{pmatrix}\begin{pmatrix} N - M \ n - x \ \end{pmatrix}}{\begin{pmatrix} N \ n \ \end{pmatrix}}$
for $x = 0,\ 1,\ 2,\ \cdots,\ n$, $x \leq M$ and $n - x \leq N - M$
$x$ (no. of sampled success elements)
$n$ (no. of sampling)
$N$ (no. of total elements)
$M$ (no. of total success elements)
fairly complex $\mu = \frac{\text{nM}}{N}$
$\sigma^{2} = \frac{\text{nM}\left( N - M \right)\left( N - n \right)}{N^{2}\left( N - 1 \right)}$
     
Poisson distribution $p\left( x;\ \lambda \right) = \frac{\lambda^{x}e^{- \lambda}}{x!}$
for $x = 0,\ 1,\ 2,\ \cdots$
$x$ (no. of successes within a range)
$\lambda > 0$
$M_{X}\left( t \right) = e^{\lambda(e^{t} - 1)}$ $\mu = \lambda$
$\sigma^{2} = \lambda$
3   [dpqr]pois(x, lambda)

  1. $f(x;\ \theta) + f(x;\ \theta) + \cdots + f(x;\ \theta)$
    $\rightarrow$ sum of $n$ Bernoulli distributions 

  2. The number of trials needed to get the $k$th success = $k - 1$ number of successes on $x - 1$ number of trials and $1$ success of Bernoulli distributions 

  3. Infinite number of Bernoulli distributions within a range
    ($\lambda$ = the rate at which the events occur)
    Approximation of Bernoulli distributions when $n$ is large 

Categories:

Updated: