probability density function argument and parameter(s) Moment-generating function
$M_{X}\left( t \right) = E(e^{\text{tX}})$
Moments
$\mu = E\left( X \right) = \int_{- \infty}^{\infty}{x \cdot f\left( x \right)\text{dx}}$<$\sigma^{2} = \text{Var}\left( X \right) = \int_{- \infty}^{\infty}{\left( x - \mu \right)^{2} \cdot f\left( x \right)\text{dx}}$
Random variable generator Remark Corresponding of discrete distributions R
uniform distribution \(u\left( x;\ \alpha,\ \beta \right) = \left\{ \begin{matrix} \frac{1}{\beta - \alpha} & \mathrm{\text{for }}\alpha < x < \beta \\ 0 & \mathrm{\text{elsewhere}} \end{matrix} \right)\) $\alpha < \beta$   $\mu = \frac{\alpha + \beta}{2}$
$\sigma^{2} = \frac{\left( \beta - \alpha \right)^{2}}{12}$
$X=\alpha +(\beta -\alpha )U(0,1)$ The beta distribution with $\alpha = \beta = 1$   [dpqr]unif(x, alpha, beta)
beta distribution \(f\left( x \right) = \left\{ \begin{matrix} \frac{\Gamma\left( \alpha + \beta \right)}{\Gamma\left( \alpha \right)\Gamma\left( \beta \right)}x^{\alpha - 1}\left( 1 - x \right)^{\beta - 1} & \mathrm{\text{for }}0 < x < 1 \\ 0 & \mathrm{\text{elsewhere}} \end{matrix} \right)\) $\alpha > 0$
$\beta > 0$
  $\mu = \frac{\alpha}{\alpha + \beta}$
$\sigma^{2} = \frac{\text{αβ}}{\left( \alpha + \beta \right)^{2}\left( \alpha + \beta + 1 \right)}$
  1   [dpqr]beta(x, alpha, beta)
exponential distribution \(g(x;\ \lambda) = \left\{ \begin{matrix} \frac{1}{\lambda}e^{- \frac{x}{\lambda}} & \mathrm{\text{for }}x > 0 \\ 0 & \mathrm{\text{elsewhere}} \\ \end{matrix} \right)\) $\lambda > 0$ $M_{X}\left( t \right) = \left( 1 - \text{λt} \right)^{- 1}$ $\mu = \frac{1}{\lambda}$
$\sigma^{2} = \frac{1}{\lambda^{2}}$
$X=-\frac{1}{\lambda}\ln(1-U(0,1))$ or $X=-\frac{1}{\lambda}\ln(U(0,1))$ 2   [dpqr]exp(x, lambda)
chi-square distribution \(f\left( x \right) = \left\{ \begin{matrix} \frac{1}{\lambda^{\nu/2}\Gamma\left( \nu/2 \right)}x^{\frac{\nu}{2} - 1}e^{- \frac{x}{2}} & \mathrm{\text{for }}x > 0 \\ 0 & \mathrm{\text{elsewhere}} \\ \end{matrix} \right)\) $\nu > 0$ (no. of degrees of freedom = degrees of freedom) $M_{X}\left( t \right) = \left( 1 - 2t \right)^{- \nu/2}$ $\mu = \nu$
$\sigma^{2} = 2\nu$
  3    
gamma distribution \(g(x;\ \alpha,\ \lambda) = \left\{ \begin{matrix} \frac{1}{\lambda^{\alpha}\Gamma\left( \alpha \right)}x^{\alpha - 1}e^{- \frac{x}{\lambda}} & \mathrm{\text{for }}x > 0 \\ 0 & \mathrm{\text{elsewhere}} \\ \end{matrix} \right)\) $\alpha > 0$
$\lambda > 0$
$M_{X}\left( t \right) = \left( 1 - \text{λt} \right)^{- \alpha}$ $\mu = \frac{\alpha}{\lambda}$
$\sigma^{2} = \frac{\alpha}{\lambda^{2}}$
  4   [dpqr]gamma(x, alpha, lambda)
normal distribution
(= Gaussian distribution)
\(n(x;\ \mu,\ \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{- \frac{1}{2}\left( \frac{x - \mu}{\sigma} \right)^{2}}\) $- \infty < \mu < \infty$
$\sigma > 0$
$M_{X}\left( t \right) = e^{\text{μt} + \frac{1}{2}\sigma^{2}t^{2}}$ $\mu = \mu$
$\sigma^{2} = \sigma^{2}$
$X=\sqrt{2}\text{erf}^{-1}(2U(0,1)-1)$ 5 Binomial distribution
$\mu = \text{np}$
$\sigma^{2} = \text{np}(1 - p)$
[dpqr]norm(x, mu, sigma)
standard normal distribution \(n(x;0,\ 1) = \frac{1}{\sqrt{2\pi}}e^{- \frac{1}{2}x^{2}}\)   $M_{X}\left( t \right) = e^{\frac{t^{2}}{2}}$ $\mu = 0$
$\sigma^{2} = 1$
       
Cauchy distribution $f\left( x \right) = \frac{\beta/\pi}{\beta^{2} + \left( x - \alpha \right)^{2}}$
for $- \infty < x < \infty$
$- \infty < \alpha < \infty$
$\beta > 0$
  $\mu$ and $\sigma^{2}$ does not exist.   Normal $\div$ Normal    
Rayleigh distribution \(f\left( x \right) = \left\{ \begin{matrix} 2\text{αx}e^{- \alpha x^{2}} & \mathrm{\text{for }}x > 0 \\ 0 & \mathrm{\text{elsewhere}} \\ \end{matrix} \right)\) $\alpha > 0$   $\mu = \frac{1}{2}\sqrt{\frac{\pi}{\alpha}}$
$\sigma^{2} = \frac{1}{\alpha}\left( 1 - \frac{\pi}{4} \right)$
       
Pareto distribution \(f\left( x \right) = \left\{ \begin{matrix} \frac{\alpha}{x^{\alpha + 1}} & \mathrm{\text{for }}x > 1 \\ 0 & \mathrm{\text{elsewhere}} \\ \end{matrix} \right)\) $\alpha > 0$   $\mu = \frac{\alpha}{\alpha - 1}$ provided $\alpha > 1$
$\sigma^{2} = \frac{\alpha}{\left( \alpha - 1 \right)^{2}\left( \alpha - 2 \right)}$ provided $\alpha > 2$
* The $r$-th moment about the origin $\mu_{r}^{‘}$ exists only if $r < \alpha$
$X=(1-U(0,1))^{-\frac{1}{\alpha}}$ or $X=U(0,1)^{-\frac{1}{\alpha}}$      
Weibull distribution \(f\left( x \right) = \left\{ \begin{matrix} kx^{\beta - 1}e^{- \alpha x^{\beta}} & \mathrm{\text{for }}x > 0 \\ 0 & \mathrm{\text{elsewhere}} \\ \end{matrix} \right)\) $\alpha > 0$
$\beta > 0$
  $\mu = \alpha^{- \frac{1}{\beta}}\Gamma\left( 1 + \frac{1}{\beta} \right)$   6    

* gamma function

$\Gamma\left( \alpha \right) = \int_{0}^{\infty}{x^{\alpha - 1}e^{-x}\text{dx}}$ for $\alpha > 0$

$\Gamma\left( \alpha \right) = \left( \alpha - 1 \right)!$

  1. In recent year, the beta distribution has found important applications in Bayesian inference, where parameters are looked upon as random variables, and there is a need for a fairly "flexible" probability density for the parameter $\theta$ of the binomial distribution, which takes on nonzero values only on the interval from 0 to 1.
    If $\alpha > 1$ and $\beta > 1$, the beta density has a relative maximum at $x = \frac{\alpha - 1}{\alpha + \beta - 2}$ 

  2. Waiting time between random events ($\lambda$ = the rate at which the events occur) = The gamma distribution with $\alpha = 1$ 

  3. The gamma distribution with $\alpha = \nu/2$ and $\lambda = 2$. The chi-square distribution plays a very important role in sampling theory. 

  4. The total waiting time for all $\alpha$ events (independent and identically distributed $\text{Exp}(\lambda)$) to occur distribution = $\text{Exp}\left( \lambda \right) + \text{Exp}\left( \lambda \right) + \cdots$ $\rightarrow$ sum of $\alpha$ exponential distributions = used to model positive-valued, continuous quantities whose distribution is right-skewed = As $\alpha$ increases, the gamma distribution more closely resembles the normal 

  5. Limiting distribution of sums (and averages) of random variables (Central Limit Theorem)
    * 99% of the probability mass is concentrated within $3\sigma$ 

  6. Lieblein and Zelen proposed. This is useful for modeling the number of revolutions to failure. Weibull distributions with $\beta = 1$ are exponential distributions. 

Categories:

Updated: